You are currently viewing Arduino Piezo Christmas Songs DIY Kit

Arduino Piezo Christmas Songs DIY Kit

SuperKitz.com ​Project Manual

Arduino Piezo Christmas Songs DIY Kit

Using Arduino Nano and piezo

In this project, we would be learning how to incorporate music into your Arduino projects. Here is a  Christmas project from superkitz. Having able to spend holidays under lockdown is jaring. lets make it fun with an Arduino project with a few components and parts from our  Kit, it had to be something easy, informative, and equal fun. With the help of a piezo buzzer, we are going to play the Christmas songs. As a first step was adding push buttons, one for every song.

Requirements :
● Computer with an internet connection
● Download and install Arduino IDE

Components

Arduino Nano

USB 2.0 Male to Mini USB Cable

Jumper wires

Buzzer

Pushbutton switch 12mm

Resistor 100 ohm

breadboard

Breadboard

Hardware

ARDUINO NANO

The Arduino Nano is basically a mini arduino uno which has all the capabilities as it is also made with the came chip atmega328 but in a SMD package .We are able to connect and give power to it through the MINI-B usb cable port.

Getting
Started with
Arduino Nano

 

Another wonderful feature of the arduino is the option of using a add-on boards to the arduino which comes as a module and they are known as “Shields”

Pin out diagram
Arduino Nano

Circuit Diagram

Wire up the buzzer and push switch
With Arduino Nano

Here we are using a micro push switch 12mm to select the song. i

Getting started with Arduino

Before starting any project, we need to interface Arduino with a computer. So we have to write and compile code for the Arduino to execute, as well as providing Arduino to function with the computer.

Installing The Arduino Software Package On Windows

Download a version of Arduino software suitable for your version of Windows from Arduino website / superkitzs.com. After downloading, check the instructions below to install the Arduino Integrated Development Environment (IDE).

CONNECT YOUR ARDUINO UNO BOARD WITH AN A B USB CABLE; SOMETIMES THIS CABLE IS CALLED A USB PRINTER CABLE

 

If you used the Installer, as soon as you connect your board the Windows – from XP up to 10 – will install drivers automatically

If the board is not properly recognized when the zip package is downloaded and expanded, please follow the procedure below.

  • START menu> CONTROL PANEL MENU
  • From the control panel, check for System and Security
  • Select system
  • Select Device Manager from the System window
  • Select open port named “Arduino UNO (COMxx)”, under Ports (COM & LPT). If there is no COM & LPT section, check “Other Devices” for “Unknown Device”.
  • Choose the “Update Driver Software” option by right-clicking on the “Arduino UNO (COmxx)” port
  • Navigate to the “Browse my computer for Driver software” option.
  • Choose the driver file named “arduino. inf”, located in the “Drivers” folder of the Arduino Software download (not the “FTDI USB Drivers” sub-directory). If you are using an old version of the IDE (1.0.3 or older), Choose the Uno driver file named “Arduino UNO.inf”, If an old version of the IDE (1.0.3 or older) is used
  • Thus the windows driver installation is completed

Select your board type : Arduino nano and port

Choose Tools | Serial Port menu. This is likely to be COM3 or higher (COM1 and COM2 are usually reserved for hardware serial ports). To find out, you can disconnect your board and re-open the menu; the entry that disappears should be the Arduino board. Reconnect the board and select that serial port

Clear Arduino IDE Page

Upload the program

Copy the Sketch Code given below And try to understand 

After that click on the “Upload” button. Then we can see the RX and TX LED on the board flashing. The message “Done uploading.” will appear if the uploading is a success

 

Arduino Programming

Next step: learning how to convert sheet music to code. With the instructions provided on this Github, I successfully converted the sheet music from three classic Christmas songs: We wish you a merry Christmas, Jingle Bells and Santa Claus is coming to town.

Don’t forget to include the pitches.h file, you can find it here. (The second set of code on the page). (guide below)

Sketch Code



#include "pitches.h"

#define melodyPin 9

// Jingle Bells

int melody[] = {
  NOTE_E5, NOTE_E5, NOTE_E5,
  NOTE_E5, NOTE_E5, NOTE_E5,
  NOTE_E5, NOTE_G5, NOTE_C5, NOTE_D5,
  NOTE_E5,
  NOTE_F5, NOTE_F5, NOTE_F5, NOTE_F5,
  NOTE_F5, NOTE_E5, NOTE_E5, NOTE_E5, NOTE_E5,
  NOTE_E5, NOTE_D5, NOTE_D5, NOTE_E5,
  NOTE_D5, NOTE_G5
};

int tempo[] = {
  8, 8, 4,
  8, 8, 4,
  8, 8, 8, 8,
  2,
  8, 8, 8, 8,
  8, 8, 8, 16, 16,
  8, 8, 8, 8,
  4, 4
};

// We wish you a merry Christmas

int wish_melody[] = {
  NOTE_B3, 
  NOTE_F4, NOTE_F4, NOTE_G4, NOTE_F4, NOTE_E4,
  NOTE_D4, NOTE_D4, NOTE_D4,
  NOTE_G4, NOTE_G4, NOTE_A4, NOTE_G4, NOTE_F4,
  NOTE_E4, NOTE_E4, NOTE_E4,
  NOTE_A4, NOTE_A4, NOTE_B4, NOTE_A4, NOTE_G4,
  NOTE_F4, NOTE_D4, NOTE_B3, NOTE_B3,
  NOTE_D4, NOTE_G4, NOTE_E4,
  NOTE_F4
};

int wish_tempo[] = {
  4,
  4, 8, 8, 8, 8,
  4, 4, 4,
  4, 8, 8, 8, 8,
  4, 4, 4,
  4, 8, 8, 8, 8,
  4, 4, 8, 8,
  4, 4, 4,
  2
};

// Santa Claus is coming to town

int santa_melody[] = {
  NOTE_G4,
  NOTE_E4, NOTE_F4, NOTE_G4, NOTE_G4, NOTE_G4,
  NOTE_A4, NOTE_B4, NOTE_C5, NOTE_C5, NOTE_C5,
  NOTE_E4, NOTE_F4, NOTE_G4, NOTE_G4, NOTE_G4,
  NOTE_A4, NOTE_G4, NOTE_F4, NOTE_F4,
  NOTE_E4, NOTE_G4, NOTE_C4, NOTE_E4,
  NOTE_D4, NOTE_F4, NOTE_B3,
  NOTE_C4
};

int santa_tempo[] = {
  8,
  8, 8, 4, 4, 4,
  8, 8, 4, 4, 4,
  8, 8, 4, 4, 4,
  8, 8, 4, 2,
  4, 4, 4, 4,
  4, 2, 4,
  1
};

int switchOne = 0;
int switchTwo = 0;
int switchThree = 0;

void setup(void) {
  pinMode(9, OUTPUT); // Buzzer
  pinMode(13, OUTPUT); // Led indicator when singing a note
  pinMode(2, INPUT);
  pinMode(3, INPUT);
  pinMode(4, INPUT);
}

void loop() {
  switchOne = digitalRead(2);
  switchTwo = digitalRead(3);
  switchThree = digitalRead(4);
  if (switchOne == HIGH) {
    sing(1);
  } else if (switchTwo == HIGH) {
    sing(2);
  } else if (switchThree == HIGH) {
    sing(3);
  }
}

int song = 0;

void sing(int s) {
  // iterate over the notes of the melody:
  song = s;
  if (song == 3) {
    Serial.println(" 'We wish you a Merry Christmas'");
    int size = sizeof(wish_melody) / sizeof(int);
    for (int thisNote = 0; thisNote < size; thisNote++) {

      // to calculate the note duration, take one second
      // divided by the note type.
      //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
      int noteDuration = 1000 / wish_tempo[thisNote];

      buzz(melodyPin, wish_melody[thisNote], noteDuration);

      // to distinguish the notes, set a minimum time between them.
      // the note's duration + 30% seems to work well:
      int pauseBetweenNotes = noteDuration * 1.30;
      delay(pauseBetweenNotes);

      // stop the tone playing:
      buzz(melodyPin, 0, noteDuration);

    }
  } else if (song == 2) {
    Serial.println(" 'Santa Claus is coming to town'");
    int size = sizeof(santa_melody) / sizeof(int);
    for (int thisNote = 0; thisNote < size; thisNote++) {

      // to calculate the note duration, take one second
      // divided by the note type.
      //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
      int noteDuration = 900 / santa_tempo[thisNote];

      buzz(melodyPin, santa_melody[thisNote], noteDuration);

      // to distinguish the notes, set a minimum time between them.
      // the note's duration + 30% seems to work well:
      int pauseBetweenNotes = noteDuration * 1.30;
      delay(pauseBetweenNotes);

      // stop the tone playing:
      buzz(melodyPin, 0, noteDuration);

    }
  } else {

    Serial.println(" 'Jingle Bells'");
    int size = sizeof(melody) / sizeof(int);
    for (int thisNote = 0; thisNote < size; thisNote++) {

      // to calculate the note duration, take one second
      // divided by the note type.
      //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
      int noteDuration = 1000 / tempo[thisNote];

      buzz(melodyPin, melody[thisNote], noteDuration);

      // to distinguish the notes, set a minimum time between them.
      // the note's duration + 30% seems to work well:
      int pauseBetweenNotes = noteDuration * 1.30;
      delay(pauseBetweenNotes);

      // stop the tone playing:
      buzz(melodyPin, 0, noteDuration);

    }
  }
}

void buzz(int targetPin, long frequency, long length) {
  digitalWrite(13, HIGH);
  long delayValue = 1000000 / frequency / 2; // calculate the delay value between transitions
  //// 1 second's worth of microseconds, divided by the frequency, then split in half since
  //// there are two phases to each cycle
  long numCycles = frequency * length / 1000; // calculate the number of cycles for proper timing
  //// multiply frequency, which is really cycles per second, by the number of seconds to
  //// get the total number of cycles to produce
  for (long i = 0; i < numCycles; i++) { // for the calculated length of time...
    digitalWrite(targetPin, HIGH); // write the buzzer pin high to push out the diaphram
    delayMicroseconds(delayValue); // wait for the calculated delay value
    digitalWrite(targetPin, LOW); // write the buzzer pin low to pull back the diaphram
    delayMicroseconds(delayValue); // wait again or the calculated delay value
  }
  digitalWrite(13, LOW);

} 

Don’t forget to include the pitches.h file, you can find it here. (The second set of code on the page).

Including the pitches.h file

To make the pitches.h file, either click on the button just below the serial monitor icon and choose “New Tab”, or use Ctrl+Shift+N.

Then paste in the following code:

/*************************************************

 * Public Constants

 *************************************************/

#define NOTE_B0  31
#define NOTE_C1  33
#define NOTE_CS1 35
#define NOTE_D1  37
#define NOTE_DS1 39
#define NOTE_E1  41
#define NOTE_F1  44
#define NOTE_FS1 46
#define NOTE_G1  49
#define NOTE_GS1 52
#define NOTE_A1  55
#define NOTE_AS1 58
#define NOTE_B1  62
#define NOTE_C2  65
#define NOTE_CS2 69
#define NOTE_D2  73
#define NOTE_DS2 78
#define NOTE_E2  82
#define NOTE_F2  87
#define NOTE_FS2 93
#define NOTE_G2  98
#define NOTE_GS2 104
#define NOTE_A2  110
#define NOTE_AS2 117
#define NOTE_B2  123
#define NOTE_C3  131
#define NOTE_CS3 139
#define NOTE_D3  147
#define NOTE_DS3 156
#define NOTE_E3  165
#define NOTE_F3  175
#define NOTE_FS3 185
#define NOTE_G3  196
#define NOTE_GS3 208
#define NOTE_A3  220
#define NOTE_AS3 233
#define NOTE_B3  247
#define NOTE_C4  262
#define NOTE_CS4 277
#define NOTE_D4  294
#define NOTE_DS4 311
#define NOTE_E4  330
#define NOTE_F4  349
#define NOTE_FS4 370
#define NOTE_G4  392
#define NOTE_GS4 415
#define NOTE_A4  440
#define NOTE_AS4 466
#define NOTE_B4  494
#define NOTE_C5  523
#define NOTE_CS5 554
#define NOTE_D5  587
#define NOTE_DS5 622
#define NOTE_E5  659
#define NOTE_F5  698
#define NOTE_FS5 740
#define NOTE_G5  784
#define NOTE_GS5 831
#define NOTE_A5  880
#define NOTE_AS5 932
#define NOTE_B5  988
#define NOTE_C6  1047
#define NOTE_CS6 1109
#define NOTE_D6  1175
#define NOTE_DS6 1245
#define NOTE_E6  1319
#define NOTE_F6  1397
#define NOTE_FS6 1480
#define NOTE_G6  1568
#define NOTE_GS6 1661
#define NOTE_A6  1760
#define NOTE_AS6 1865
#define NOTE_B6  1976
#define NOTE_C7  2093
#define NOTE_CS7 2217
#define NOTE_D7  2349
#define NOTE_DS7 2489
#define NOTE_E7  2637
#define NOTE_F7  2794
#define NOTE_FS7 2960
#define NOTE_G7  3136
#define NOTE_GS7 3322
#define NOTE_A7  3520
#define NOTE_AS7 3729
#define NOTE_B7  3951
#define NOTE_C8  4186
#define NOTE_CS8 4435
#define NOTE_D8  4699
#define NOTE_DS8 4978 

and save it as pitches.h

Output

As you press the micro switches. The music corresponding to the individual switches plays on the pizeo speaker.

Leave a Reply