SuperKitz.com Project Manual
Arduino Piezo Christmas Songs DIY Kit
Using Arduino Nano and piezo
In this project, we would be learning how to incorporate music into your Arduino projects. Here is a Christmas project from superkitz. Having able to spend holidays under lockdown is jaring. lets make it fun with an Arduino project with a few components and parts from our Kit, it had to be something easy, informative, and equal fun. With the help of a piezo buzzer, we are going to play the Christmas songs. As a first step was adding push buttons, one for every song.
Requirements :
● Computer with an internet connection
● Download and install Arduino IDE
Components
Arduino Nano
USB 2.0 Male to Mini USB Cable
Jumper wires
Buzzer
Pushbutton switch 12mm
Resistor 100 ohm
Breadboard
Hardware
ARDUINO NANO
The Arduino Nano is basically a mini arduino uno which has all the capabilities as it is also made with the came chip atmega328 but in a SMD package .We are able to connect and give power to it through the MINI-B usb cable port.
Getting
Started with
Arduino Nano
Another wonderful feature of the arduino is the option of using a add-on boards to the arduino which comes as a module and they are known as “Shields”
Pin out diagram
Arduino Nano
Circuit Diagram
Wire up the buzzer and push switch
With Arduino Nano
Here we are using a micro push switch 12mm to select the song. i
Getting started with Arduino
Before starting any project, we need to interface Arduino with a computer. So we have to write and compile code for the Arduino to execute, as well as providing Arduino to function with the computer.
Installing The Arduino Software Package On Windows
Download a version of Arduino software suitable for your version of Windows from Arduino website / superkitzs.com. After downloading, check the instructions below to install the Arduino Integrated Development Environment (IDE).
CONNECT YOUR ARDUINO UNO BOARD WITH AN A B USB CABLE; SOMETIMES THIS CABLE IS CALLED A USB PRINTER CABLE
If you used the Installer, as soon as you connect your board the Windows – from XP up to 10 – will install drivers automatically
If the board is not properly recognized when the zip package is downloaded and expanded, please follow the procedure below.
- START menu> CONTROL PANEL MENU
- From the control panel, check for System and Security
- Select system
- Select Device Manager from the System window
- Select open port named “Arduino UNO (COMxx)”, under Ports (COM & LPT). If there is no COM & LPT section, check “Other Devices” for “Unknown Device”.
- Choose the “Update Driver Software” option by right-clicking on the “Arduino UNO (COmxx)” port
- Navigate to the “Browse my computer for Driver software” option.
- Choose the driver file named “arduino. inf”, located in the “Drivers” folder of the Arduino Software download (not the “FTDI USB Drivers” sub-directory). If you are using an old version of the IDE (1.0.3 or older), Choose the Uno driver file named “Arduino UNO.inf”, If an old version of the IDE (1.0.3 or older) is used
- Thus the windows driver installation is completed
Select your board type : Arduino nano and port
Choose Tools | Serial Port menu. This is likely to be COM3 or higher (COM1 and COM2 are usually reserved for hardware serial ports). To find out, you can disconnect your board and re-open the menu; the entry that disappears should be the Arduino board. Reconnect the board and select that serial port
Clear Arduino IDE Page
Upload the program
Copy the Sketch Code given below And try to understand
After that click on the “Upload” button. Then we can see the RX and TX LED on the board flashing. The message “Done uploading.” will appear if the uploading is a success
Arduino Programming
Next step: learning how to convert sheet music to code. With the instructions provided on this Github, I successfully converted the sheet music from three classic Christmas songs: We wish you a merry Christmas, Jingle Bells and Santa Claus is coming to town.
Don’t forget to include the pitches.h file, you can find it here. (The second set of code on the page). (guide below)
Sketch Code
#include "pitches.h"
#define melodyPin 9
// Jingle Bells
int melody[] = {
NOTE_E5, NOTE_E5, NOTE_E5,
NOTE_E5, NOTE_E5, NOTE_E5,
NOTE_E5, NOTE_G5, NOTE_C5, NOTE_D5,
NOTE_E5,
NOTE_F5, NOTE_F5, NOTE_F5, NOTE_F5,
NOTE_F5, NOTE_E5, NOTE_E5, NOTE_E5, NOTE_E5,
NOTE_E5, NOTE_D5, NOTE_D5, NOTE_E5,
NOTE_D5, NOTE_G5
};
int tempo[] = {
8, 8, 4,
8, 8, 4,
8, 8, 8, 8,
2,
8, 8, 8, 8,
8, 8, 8, 16, 16,
8, 8, 8, 8,
4, 4
};
// We wish you a merry Christmas
int wish_melody[] = {
NOTE_B3,
NOTE_F4, NOTE_F4, NOTE_G4, NOTE_F4, NOTE_E4,
NOTE_D4, NOTE_D4, NOTE_D4,
NOTE_G4, NOTE_G4, NOTE_A4, NOTE_G4, NOTE_F4,
NOTE_E4, NOTE_E4, NOTE_E4,
NOTE_A4, NOTE_A4, NOTE_B4, NOTE_A4, NOTE_G4,
NOTE_F4, NOTE_D4, NOTE_B3, NOTE_B3,
NOTE_D4, NOTE_G4, NOTE_E4,
NOTE_F4
};
int wish_tempo[] = {
4,
4, 8, 8, 8, 8,
4, 4, 4,
4, 8, 8, 8, 8,
4, 4, 4,
4, 8, 8, 8, 8,
4, 4, 8, 8,
4, 4, 4,
2
};
// Santa Claus is coming to town
int santa_melody[] = {
NOTE_G4,
NOTE_E4, NOTE_F4, NOTE_G4, NOTE_G4, NOTE_G4,
NOTE_A4, NOTE_B4, NOTE_C5, NOTE_C5, NOTE_C5,
NOTE_E4, NOTE_F4, NOTE_G4, NOTE_G4, NOTE_G4,
NOTE_A4, NOTE_G4, NOTE_F4, NOTE_F4,
NOTE_E4, NOTE_G4, NOTE_C4, NOTE_E4,
NOTE_D4, NOTE_F4, NOTE_B3,
NOTE_C4
};
int santa_tempo[] = {
8,
8, 8, 4, 4, 4,
8, 8, 4, 4, 4,
8, 8, 4, 4, 4,
8, 8, 4, 2,
4, 4, 4, 4,
4, 2, 4,
1
};
int switchOne = 0;
int switchTwo = 0;
int switchThree = 0;
void setup(void) {
pinMode(9, OUTPUT); // Buzzer
pinMode(13, OUTPUT); // Led indicator when singing a note
pinMode(2, INPUT);
pinMode(3, INPUT);
pinMode(4, INPUT);
}
void loop() {
switchOne = digitalRead(2);
switchTwo = digitalRead(3);
switchThree = digitalRead(4);
if (switchOne == HIGH) {
sing(1);
} else if (switchTwo == HIGH) {
sing(2);
} else if (switchThree == HIGH) {
sing(3);
}
}
int song = 0;
void sing(int s) {
// iterate over the notes of the melody:
song = s;
if (song == 3) {
Serial.println(" 'We wish you a Merry Christmas'");
int size = sizeof(wish_melody) / sizeof(int);
for (int thisNote = 0; thisNote < size; thisNote++) {
// to calculate the note duration, take one second
// divided by the note type.
//e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
int noteDuration = 1000 / wish_tempo[thisNote];
buzz(melodyPin, wish_melody[thisNote], noteDuration);
// to distinguish the notes, set a minimum time between them.
// the note's duration + 30% seems to work well:
int pauseBetweenNotes = noteDuration * 1.30;
delay(pauseBetweenNotes);
// stop the tone playing:
buzz(melodyPin, 0, noteDuration);
}
} else if (song == 2) {
Serial.println(" 'Santa Claus is coming to town'");
int size = sizeof(santa_melody) / sizeof(int);
for (int thisNote = 0; thisNote < size; thisNote++) {
// to calculate the note duration, take one second
// divided by the note type.
//e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
int noteDuration = 900 / santa_tempo[thisNote];
buzz(melodyPin, santa_melody[thisNote], noteDuration);
// to distinguish the notes, set a minimum time between them.
// the note's duration + 30% seems to work well:
int pauseBetweenNotes = noteDuration * 1.30;
delay(pauseBetweenNotes);
// stop the tone playing:
buzz(melodyPin, 0, noteDuration);
}
} else {
Serial.println(" 'Jingle Bells'");
int size = sizeof(melody) / sizeof(int);
for (int thisNote = 0; thisNote < size; thisNote++) {
// to calculate the note duration, take one second
// divided by the note type.
//e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
int noteDuration = 1000 / tempo[thisNote];
buzz(melodyPin, melody[thisNote], noteDuration);
// to distinguish the notes, set a minimum time between them.
// the note's duration + 30% seems to work well:
int pauseBetweenNotes = noteDuration * 1.30;
delay(pauseBetweenNotes);
// stop the tone playing:
buzz(melodyPin, 0, noteDuration);
}
}
}
void buzz(int targetPin, long frequency, long length) {
digitalWrite(13, HIGH);
long delayValue = 1000000 / frequency / 2; // calculate the delay value between transitions
//// 1 second's worth of microseconds, divided by the frequency, then split in half since
//// there are two phases to each cycle
long numCycles = frequency * length / 1000; // calculate the number of cycles for proper timing
//// multiply frequency, which is really cycles per second, by the number of seconds to
//// get the total number of cycles to produce
for (long i = 0; i < numCycles; i++) { // for the calculated length of time...
digitalWrite(targetPin, HIGH); // write the buzzer pin high to push out the diaphram
delayMicroseconds(delayValue); // wait for the calculated delay value
digitalWrite(targetPin, LOW); // write the buzzer pin low to pull back the diaphram
delayMicroseconds(delayValue); // wait again or the calculated delay value
}
digitalWrite(13, LOW);
}
Don’t forget to include the pitches.h file, you can find it here. (The second set of code on the page).
Including the pitches.h file
To make the pitches.h file, either click on the button just below the serial monitor icon and choose “New Tab”, or use Ctrl+Shift+N.
Then paste in the following code:
/*************************************************
* Public Constants
*************************************************/
#define NOTE_B0 31
#define NOTE_C1 33
#define NOTE_CS1 35
#define NOTE_D1 37
#define NOTE_DS1 39
#define NOTE_E1 41
#define NOTE_F1 44
#define NOTE_FS1 46
#define NOTE_G1 49
#define NOTE_GS1 52
#define NOTE_A1 55
#define NOTE_AS1 58
#define NOTE_B1 62
#define NOTE_C2 65
#define NOTE_CS2 69
#define NOTE_D2 73
#define NOTE_DS2 78
#define NOTE_E2 82
#define NOTE_F2 87
#define NOTE_FS2 93
#define NOTE_G2 98
#define NOTE_GS2 104
#define NOTE_A2 110
#define NOTE_AS2 117
#define NOTE_B2 123
#define NOTE_C3 131
#define NOTE_CS3 139
#define NOTE_D3 147
#define NOTE_DS3 156
#define NOTE_E3 165
#define NOTE_F3 175
#define NOTE_FS3 185
#define NOTE_G3 196
#define NOTE_GS3 208
#define NOTE_A3 220
#define NOTE_AS3 233
#define NOTE_B3 247
#define NOTE_C4 262
#define NOTE_CS4 277
#define NOTE_D4 294
#define NOTE_DS4 311
#define NOTE_E4 330
#define NOTE_F4 349
#define NOTE_FS4 370
#define NOTE_G4 392
#define NOTE_GS4 415
#define NOTE_A4 440
#define NOTE_AS4 466
#define NOTE_B4 494
#define NOTE_C5 523
#define NOTE_CS5 554
#define NOTE_D5 587
#define NOTE_DS5 622
#define NOTE_E5 659
#define NOTE_F5 698
#define NOTE_FS5 740
#define NOTE_G5 784
#define NOTE_GS5 831
#define NOTE_A5 880
#define NOTE_AS5 932
#define NOTE_B5 988
#define NOTE_C6 1047
#define NOTE_CS6 1109
#define NOTE_D6 1175
#define NOTE_DS6 1245
#define NOTE_E6 1319
#define NOTE_F6 1397
#define NOTE_FS6 1480
#define NOTE_G6 1568
#define NOTE_GS6 1661
#define NOTE_A6 1760
#define NOTE_AS6 1865
#define NOTE_B6 1976
#define NOTE_C7 2093
#define NOTE_CS7 2217
#define NOTE_D7 2349
#define NOTE_DS7 2489
#define NOTE_E7 2637
#define NOTE_F7 2794
#define NOTE_FS7 2960
#define NOTE_G7 3136
#define NOTE_GS7 3322
#define NOTE_A7 3520
#define NOTE_AS7 3729
#define NOTE_B7 3951
#define NOTE_C8 4186
#define NOTE_CS8 4435
#define NOTE_D8 4699
#define NOTE_DS8 4978
and save it as pitches.h
Output
As you press the micro switches. The music corresponding to the individual switches plays on the pizeo speaker.